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Abstract
Special and degenerate representations for reduced cells have been
derived from the 41 Niggli matricies for general reduced cells, They
are combined with the representations for the general reduced cells to
form an expeanded classification scheme based on specific relationships
between the individual elements of the matrix representation,

Typographical errors in several references are noted and corrected.



1., Introduction

The purpose of this paper is to lay the foundation for a computer
program to be written for indexing unknown X-ray powder patterns. The
concept of a Niggli reduced cell is used; the figures upon which this
type of cell is based have been redreawn to emphasize the positive
direction of, and the appropriate angles between, the various vectors
defining the cell. Typographical errors in several references are noted
end corrected, An expansion of a classification teble is made that
includes special and degenerate cases of the reduced cell for which no
entry to the classification teble has been previously provided, and,
finally,the classification teble is arranged in & manner convenient for
camputer programming.

The concept of a reduced cell has been familiar in the field of
crystallography for several decades. The reduced cell used in this
peper is a speciel cell, a specific one of the infinite number of cells
which may be used to describe or characterize a lattice., Briefly, it is

the unit cell having as edges the shortest three noncoplanar trans-

lations of the lattice.

In addition, as outlined by Azaroff end Buerger (1958), pg. 129-
131, a unit cell may be characterized by having the cosines of the inter-
axial angles all positive (type I) or all negative (type II). Any

nixture of positive and negative cosines may be transformed to either




.

type I or type 11 by sppropriate reversal of the individual axial
directions. Therefore, the reduced cell may be further characterized

as also heving the interaxial angles either all acute or all cbtuse.

2. The Niggli matrix representation
A unit cell of a lattice is usually described by listing the three
cell edges, &, b, c, and the three interaxial engles, o, B, y. However,

the following scalar products

ae = ef (1)
b =° (2)
ee = c® (3)
E'E = ab cos ¥y (&)
asc = ac cos B (5)
bec = be cos o (6)

may also be taken as an exact representation of the cell, since the six
quantities a, b, ¢, and @, B, y can be readily derived from them. For
identification purposes the six scalar products may be arranged in a
particular format, specifically a rectangular arrsy
&2 bd coc
(7)
bec 8ec &b

The numerical aspects of these scalar products may be emphasized
by writing the rectenguler array as

511 5o Ss3

(8)
Sp3 S13 Spp




In this case 823 represents the scalar product between the axes labeled
2 and 3, etc. Any particular cell may be represented by setting down in
the arrey format the numerical values of these six quentities.

Since there are 14 space lattice types it might be supposed thet
there are also 14 reduced-cell representations. Actually, because same
lattice types have several different representations which depend in
detail on the verious dimensional relations and specific identification
of the three axes of the unit cell, there is a total of 41 "standard"
representations for all the cases of general reduced cells. These have
been discussed in detail by Niggli (1928) and by Azaroff and Buerger,
(1958) and are also discussed here in Appendix C. In many cases an
"alternative" (as opposed to "standard") representation may be found for
a general reduced cell., This "alternative" representation is just as
legitimate & representation as the "standard". In order to limit the
number of reduced-cell representations to be considered in foto, the
usual convention is to assign the value -0.0 to the cosine of 90°. Thug
the "standard" representation will in general, if at all possible, be a
unit cell of type II. For example, a simple orthorhombic reduced cell
has three unequal edges and three angles equal to 90°. The "standard"
representation thus has a«.b = -0.0, &.c = -0.0, and bec = -0.0, wherees
the "alternative" representation would have these quantities equal to
4+0.0.

In Niggli's treatment of general reduced-cell types the three

shortest noncoplanar vectors are labeled e £, gwithe<f < g Ina




later section of this paper it will be shown thet there exist "standard"
representations in which two (or three) of the e, £, g vectors are equal
in magnitude and that these do not correspond to any of the 41 general
reduced-cell "standard" representatibns. Such reduced cells are
designated special or degenerate to distinguish them from a general
reduced cell.

The remainder of this paper will be concerned with the following
four types of representations:

1., "Standard" general representations

2. Alternetive general representations

3. '"Standerd" degenerate representations

b, Alternative degenerate represéntations

For convenience the reduced-cell types discussed by Niggli have
been redrawn and are given in Appendix A,

Teble 1 lists the rectangular array (hereafter designated & Niggli
matrix) representetion of the reduced-cell types drawn in Appendix A.

This teble is a correction of Table 6, pg 146, of Azaroff and Buerger.



Table 1.

The Niggli matrix representation of the reduced cells.
(Mumbers are Miggli's figure numbers.)

b4

Cwbie "1 fu u (&% A) 5“ fn 1 (W 3)
T T 1/3 3, 1/3 %, 138,
. S5 By 5\ 8y, 8y S5 ' c
et (s 5 5 ) Ybes, R E, 5 s 0
S 52 B2\ (s Byy 82 8! (5 D)
(a 5 5 ) o 5a-5a) Yeffa-Be) B
8y, % 8, 2
1/ 8y 1fe 8y 1/e 8,
ONENE
Hexsgooal (6 5 e gn (M8 A)
8)) Spp 8pp a8 %) :
/28, T 1)
Su % By 8 5 1Y
Orthorhombic (5 5 5 (50 ¢) ig’ 51, (’u oE . 3'19 {52 A)
8y, S5 iy
by 6y 5 ) 52 3)
=z =z
By, S0 s
5 5, 5 (5@ ¢)
+ +
5,, S, 8 8 8 s
Mouoelinte n 33) (s3.0) 11 22 35 5T N
(o £, °© ) /o3, - Eu) n/z(§n - sn) 5,
(zu 2 s”) (53 8) u e 3 {517 3)
A L 5, (gn ) su) 7
‘u %2 S e 8o 255
(53 ¢)
(E 5 Sos 12 8, afe s, (51 ¢)
i 1) g 359
€ € 32’ sl} 8 (58 &)
n Fe2 B
By By By




(An * designates a corrected element in the matrix.)

4 . c R
s ] s
11 1 11 (% ¢y
1/25,, 1/2 Sy 128,

LY 8y, 8yy

(./2 85y 1/2 8y, 1/2 8, (9 3)
Sn 8 S

1

32, ,2, 52, (49 ¢)
8 8 8
‘u 11 12\ (49 1)
s By 5y

511 S22 S20\
-\ - )
(o - omy om ms) "

s s s s s
R A T T el LY
523 23 5,-2 s”) o 1/2 8 9
) -
Su S22 Sy ( s s 8
o o - (513 no @ Blson)
( ‘171‘ _"1% _;.1_ ) .6 § 125,
Sy 8, 8y (s0%7)
/2%, 3 5
8, 3, Sy
5 5 T, {50 D)
8y, 8, 3,) o B
52’ o g
¢ c
i 92 353 s o s s o s
(§ s g, G0 0§u 0§'u ® » (55 A) u = P60
23 3 % 23 23 12 /2 8, 22 5y, $1a
Su S22 s”) s, s, s, s 5 s
- - (5% 3) 11 <3 2 n ' 33
(g_'?_ S (";:3 4 ,gu)(ss Y (/2 S22 afs, st
.5 ) s
11 2 8 s 8
(-E g 8”) (s ©) u 22 33 (56 ¢)
23 __213._ /2 Sy S15 12 s),




3. The transformation matrices

All reduced cells are considered to be primitive triclinic cells.
Special engles, i.e. 90°, or other relationships involving symmetry of
the lattices result in pax;ticular values for many of the terms in the
Niggli matrix. These values and relationships form the basis for the
classification system which will be described in the next section.

The axes of & reduced cell are identical with the axes of a second
unit cell only if the second unit cell is itself primitive. In all
other cases the axes of a second cell thet hes more symmetry elements
than the reduced cell may be found from the axes of the reduced cell
with the aid of a transformation. |

In the genersl case this transformation has the form

& = Ulgr + Vll-)-r + Wl-?-r
by = Uyg, + Vb, + e, (9)

St = Ujgr + VBEr + str

vhere (a, b, ¢) £ ™ the axes of the transformed cell,
(a, b, g)r = the axes of the reduced cell
end (U, V, W) 1,2,3 = coefficients of the vector transla.tions;
Since in specific ceses only the coefficients of Eq (9) vary, the trans-
formation process is usually represented by a matrix. For Eq (9) the
matrix is

Ul V:L Wl

u, v, W, (10)

Uy V3 Wy

10




Different terms of the matrix (10) imply different degrees of
symmetry in the transformed cell, 1In Table 2 are listed the transfor-
mation matrices to be used with the reduced-cell representations of
Teble 1, The Niggli figure numbers provide a convenient cross-
correlation between Teble 1 and 2. Teble 2 is a correction of Teble 7,
ve 148, of Azaroff and Buerger.

The interaxial angles of the transformed cell may also be found by
utilizing Eq (9). No transformation of interaxial angles is required
in the triclinic case since the reduced cell is primitive. In all other
cases the only transformed-cell interaxial angle calculation required
is for angle B for monoclinic crystals. This may be computed according
to the folowing anelysis.,

The scalar product of a and ¢ of the transformed cell is given by

&.oc, = la| x le,] x cos (8 c,) (11)
8,°*C
8¢S

Substituting from Eq (9) for scalar product 2.cc, gives

1

St

cos B, = {(Ulgr #VD_+We) - (Ua +VDb_ +Wc )} (13)



Table 2. Transformation matrices from reduced cells to unit cells.
(Numbers are Niggli's figure numbers.)(An * designates a corrected matrix row.)

P I r c

B

E'E

100 101
Cubic . . (olo) (4% A) (uo) (4% B) ( )(kk c)
001 011

et

100"
Tetragonal 010 | (45 A) (om) (45 C)
001 12

100 100
Hexsgonal (om) (48 A) (1‘10
001 113,
(o (50|
001 | (438 B) )
(=) (=




¢t

Orthorhombic

100
o010 | (50 ¢)
001,

101

<no) (52 A)
011
Too!
11} (s2 B)
o1l
100
010) (52 C)
Iz,

110
110) (50 D)
00.
011

(o‘ (50 )
100,

Monoelinic

100
(n:a;) (57 A)
0
011
no) (57 B)
101,
* /o1l
(100-> (57 )
§35 ]

*

120
100) (5% A)
001,
012
o1o> (5% B)
100,
102

(100) (5% ¢)
010 ¢

110

.('1'10) (55 A)
001
(30

(oﬁ) (55 B)
100,

00
<;02) (56 A)
010

010
(oTz> (56 B)
100,

Too
'1'20) (56 ©)

001,

Triclinic




1 2 2 2
== {UlUBEr + VlVBP-r + wlwzgr
—t=t
+ U1V35r°3r + U1W5E.r’~cr (1)

+ VlUBP-r'-E'r + V1W3Er.3r

+WUc e + lesﬁr'l'ir}
Substitutions for sceler cross-product terms fram Eq (4), (5), and (6)

and rearrangement gives

1 2 2 2
cos Bt i ar-a { lUBE‘-r + Vlv3p-r + Wleg_r
~t—t
+(UVy + UzVy) 8B, cos 7, (15)

+ (V]_W3 + VBWl) Ergr cos a
+ (WlU3 + W3Ul) c &, cos Br}
Since the cosine is known, the angle Bt may be easily found.
b, A classification system for the Niggli matrices
After the scalar array for a particular cell has been found, the
next step is to identify it with one of the 'standard" representations
in Teble 1. Niggli presented a teble to perform this operation, and
Azaroff and Buerger translated and rearranged this table to yield in
their book Teble 8, pg 150. They also describe the procedure for
using their table.
Use of their procedure and Teble 8, provides an elegant method of
identification provided that the scalar array being examined belongs to
one of the 41 "general" reduced-cell types. To realize the maximum

usefulness fram such a table however, one should be able to find and

1



identify the special and degenerate cases that result when one (or two)
of the reduced-cell vectors e, f, g are equal in magnitude and do not
yield a representation identical with any of the "standard" 41
representations.

For example, the representation for & hexagonal cell with g/g > 1.0

is
S11 511 Ss3
5 0 °n
>
and for g/g < 1.0
S11 Sy S
S & 0
5

Both of these representations are in the table, But for ¢ a = 1.0, the
representation for & hexagonel cell may be

S 8 S S S ] S S S

11 511 i1 11 511 Si1 11 S11 511
P—d - — s Or - - _ or - - -
511 @ © 5 S11 05 6 0 Sn
> > )

These three representations for the case of g/g = 1,0 result
because it is not known which of the three identical axes is used or
chosen as the "a, b,or c" axes of the unit cell, If these special
representations are included in a classification scheme, then a routine
search of the tables and application of the appropriate transformetion

metrix will result in & transformed cell having the conventional setting

15




of @ = 90°, B = 90°, y = 120°, Since a computer, or & humen being for
that matter, mey find any of the three representations, & classification
scheme should consider cases of this type. Azaroff and Buerger's
current version of Teble 8 does not allow this to be done.

All the special and degenerate cases are determined by allowing
the e z, g vectors of the 41 general Niggli reduced cells to be equal
to each other according to the scheme illustreted in Figure 1., Stearting
with the general set of vectors e, f, g, the vector g mey decrease in
megnitude until it exactly equals the magnitude of f, then the vector
set will be e, %, T, This set may degenerate in one of two ways
depending on whether the £ vector in the second or third position
degenerates to equal in magnitude an e vector. If the second vector
degenerates, the set is e, e, f. If the third vector degenerates, the
set is (s, T, 5), which, if the convention of listing the shortest
vectors first is followed, transforms to e, e, f. Extreme care must be
exercised at this stage as the transformed set may or may not identically
equal the e e f set obtained when the second vector of e f, g
degenerates to e. Both the e, e, T and the (_g_, %, _g_) vector sets may
reduce to e e e if f degenerates to equal in megnitude the vector e.

The vector set e, f, g may also degenerate in two other weys. The
vector E may go directly to an e value; in that case g beccomes the
second longest vector, which is usually designated f. Or, the originel
vector & mey go directly to an e value,and in thet case the represen-

tetion is (3, T, 3). This set was discussed in the previous paragraph.

16
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If at any time during the application of Figure 1 to each of the
41 reduced cells a representation is obtained which is different from
one of the 4l representations, then this representation is retained for
inclusion in an expa.nsibn of the scheme of Table 8 of Azaroff end
Buerger. If a representetion is obtained that is equal to one of the b3
general representations, then the representation is ignored as it is
adequately covered under the general headings.

An illustrative example of the derivation of speciel and degenerate
cases 1s given below by spplying Figure 1 to an end.-centered ortho-
rhombic cell, Niggli Figure 50A.

For 50A, e, £ 8 the reduced-cell representetion is

517 Spp 533
5 Su o
)

For 50A, e, f, £, the reduced-cell representation is

811 S Sy S11 Spp Sy
5 Su1 0o § 0 Sn
) 5

For 50A, e, e, f, the reduced-cell representation is

511 811 S 511 811 By
5 515 5 5 ©
5 5




For 50A, (e, f, e) the reduced-cell representation is

S11 S 8513
5 Su o
5

However, transforming to the convention of listing the shortest vectors

first gives
S11 831 8y
5 o Su1
5

which is the representation for a hexagonal cell with c/a > 1.0.
For 50A, e e 8, the reduced-cell representation is

S S S S S S S S S

11 511 Sip 11 511 Snin 11 511 Sni1
- — — F] Or - - - ) or - — -~
511 6 5 5 511 0 6 © °Sn
> 5 >

which is the representetion for a hexegonal cell with c/a = 1.0,
Assuming that the hexagonel degeneracies have been previously
determined, the allowable reduced magnitudes of the various vectors in
50A yield four representations that had not been seen before. Two for

the e, f, £ case and two for the e, e, f case. Tt is of special

interest to note that the e, e, f case does not equal the (_g, z, 3) case,
which illustrates the point made previously that these cases are not
automatically equal.

Ninety-one special and degenerate cases were derived in this

manner. These are incorporated with the standard L4l representations in

19




Appendix B which is an expanded version of Azaroff and Buerger's Teble 8,

The use of Appendix B for identification of a reduced cell is very
similar to the procedure for use with Teble 8 of Azaroff and Buerger.
The given scalar metrix ‘is examined,end the table is entered under the
major catagory of the symmetrical scalers being either

S = 3 =S

11 22 33

and the minor branch of unsymmetrical scalars being either all-positive
or all-negative, A quick glance down the first column of the minor

branch (assume S S,, = S,, and the all-negative minor branch)

11~ o 33

identifies the unsymmetrical scalar 823
S S
o, —]5‘—1, %, same other specialized value, or & general value. At

that point the second column is entered to identify the scalar S1

at some point as either

3
Upon identification of Sl}’ searching is transferred to the third
column where special or general values are noted for the scalar Sla'
When complete identification of the unsymmetrical scalars is achieved
the table is read horizontally to determine the lattice to which the
reduced cell belongs; the Niggli figure from which it was derived; and
wvhether the figure is & stendard representation, an alternative

representation of the standard, or a degenerate development. Also given

is the transformation matrix for converting the reduced cell to one of



higher symmetry according to Eq (9) and any pertinent comments that may
help to classify the transformed cell,

If a metch of unsymmetrical scalars cannot be found in searching e
minor branch of the table, then exit is made from the table with the
knowledge that a triclinic cell is under investigation.
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Appendix A,

The 41 general reduced cells according to Niggli. The original figure
numbers have been retained,but the relative orientations of seversl
of the reduced cells have been changed for clerity.

(The symbol 4 stends for the diagonal of either & unit cell or a unit
cell face depending on the context of the eppropriate Niggli figure.)
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Figure 4k, The three cubic lattices
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Figure 45,

The five tetragonal lattices
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Figure 45 (cont,) The five tetragonal lattices

26




A

Simple +

g < ¢
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Figure 48, The two hexagonal lattices
27




B TA)__——T

Simple + :
]
a < 60° b
S11 S11 Ss3\ ==
|
511 Sn Sip !
e 2 2 |
[}
[
C |
[
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Figure 49. The four rhombohedral lattices. (Drewings are the hexagonal
lattice representation)
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Figure 49, (cont.) The four rhombohedral lattices
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Simple ¢fi ;;
a.2<b2<c2 g
511 Sgp Sax
G 0 0O 8 1':07,
A
2 a°
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2

B

>
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511 Sop S33
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2

Figure 50. Simple Orthorhombic and five C-centered
Orthorhombic lattices.
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Figure 50, (cont) Simple Orthorhombic and Five C-centered
Orthorhombic Lattices
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Figure 51, The two face-centered orthorhombic lattices.
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Figure 52. The three body-centered orthorhombic lattices.,
(See Notes 1, 2, 3, Appendix B)
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A
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i |/
C
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(511 52 333) f
5 0§ §p, B 9
e

Figure 5% The three simple monoclinic lattices.
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Figure 54, Three monoclinic, double primitive lattices. Two of the
three primitive translations have a 90° included angle,
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d
]
511 511 Sa3 |
£ & % :
o3 Sp3 S1p v |f
B
c<g-
511 S22 Sep
+ x %
Sps 813 Si3

Figure 55, Two monoclinic, double primitive lattices. Two of the three
primitive translations are equal, and make equal angles with

the third translation.
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Figure 56, Three monoclinic, double primitive lattices. Two of the
three primitive translations lie in the symmetry plane.
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Figure 57. Three body-centered monoclinic lattices.
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Figure 58. Two triclinic lattices
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Appendix B.

Determination of reduced cell type by classification of symmetrical and
unsymnetrical scalars. Special and degenerate representations derived
from the 41 original Niggli reduced-cell representations are included.

(The symbol d stands for the diagonal of either a unit cell or a unit
cell face depending on the context of the appropriate Niggli figure.)




H = Transf i
Symnetrical Scalars: 311 822 - 855 ormation

Unsymmetrical Scalars: + Lattice Riggli Figure Matrix Comments
3. § ) 011 Transformation matrix yields
0 % ._212 Orthorhombic 52 B deg 01T FCC alternative representation,
21T See Note 3
011 End-centered
0 8, 5 Monoclinic 55 A deg ol1 1
3B 1,2 ,.282
100 E(a +b)  =mec a=bd
8.. B.. S ol Body-centered
n _u 1 Tetragonal 45 E a 11T
- 7z T Tagon 5 E deg e
100 . a 3.
8yy 81y ToT Transformation matrix yields
= - o] < Orthorhombic 52 B deg 101 FCC alternative representation.
al CoIeY See Note 3
Jo1 Body-centered
ili sn 11' Tetragonal ks Bad NI
2 &K 2 rag eg e VE
010 a §¥3
S.. 8§ Tio Transformation matrix yields
-;1' ‘2_11 o Orthorhombic 52 B deg 110 FCC alternative representation,
12 See Note 3
.. 5.. § 10 Body-centered
=2 2 g Tetragonal 45 E de m
2 2 T g e VE
’ 001 a Y3
1
811 311 Syy =
s 3 2 Isometric 4 ¢ std 1 Face-centered cubic

111




e

S& 311 . 001 Body-centered
5 o S1o Orthorhoabic 52 B deg ni o & 2
110 a"h- < b” < c¢” See Note 3
S1y 510 . 010 End-centered
5 5 12 Monoclinic 56 A deg 012 > s a2
: 100 & =c =7
81y 81 010 Body-centered
=7 %13 2 Orthorhombic 52 B deg 11 2 _d®_.2
To1 a-E < b™ < ¢ See Note 3
. o 001 End-centered
e Y 8 22 Monoclinic 56 A deg 021 2
2 “13 2 e ac?ad
100 1y
. . 100 End-centered
-%2 813 -—21-1- Monoclinie 56 A deg T20 s o a2
001 & =c =y
. sn Joo End-centered
12
2 s, Monoclinie 56 A deg To2 - a°
010 Y
101 End-centered
- 1
Bay O S5 Monoclinic 55 A deg ;‘1’; 1 v¥)2 e amb
. s Too Body-centered
S __21}_ _;_1 Orthorhombic 52 B deg m 2 & 2. 2
oTL a -7 <b” < ¢ See Note 3
. s 001 End-centered
g . 2 23 Monoelinie 56 A deg 201 2
23 2 2 a2 - ce - d
010 k




an

010 End-centered
S S -
825 _:2 _;.J._ Monoclinie 56 A deg 210 2. ca ) a2
001 Iy
110 End-centered
- 1
S S (o] Monoclinic 55 A deg 110 =
23 23 1,2 2,2 -
0ol 5 (& +b°)  mec aabd
110 End-centered
- 1
S, S s Monoclinic 55 A deg 110 =
23 23 12 102,202 .
001 5 (a® +b%) ¢
011 End-centered
- 1
S S S =
235 513 513 Monoclinic 55 A deg Ol; 1 (32 . b2)2 e
100 2
101 End-centered
- 1
S, S S, Monoclinic -55 A deg 101 =
23 13 “23 12,202
010 5 (a® + %) ¢
170 Transformation matrix results
Sa3 82} 825 Rhosbohedral ko C std oL in a hexagonal lattice.
1 0.0 < cos @, < 0.5




Symmetricel Scalars: Sll a 822 = S53

Transformation
Unsymmetrical Scalars: - Iattice Niggli Figure Matrix Comments
’ 100
000 Iscmetric b4 A std 010 Simple Cubic
001
3 100
e == 11 c
0 0 - Hexegonal 48 A-B deg 010 T 1.0
001
110 C - centered
00 812 Orthorhombic 50 D deg 110 2 2
d 2, 4 2
001 r < a7; r = C
= 00l
- sll . (]
0 = 0 Hexegonal 48 A-B deg 100 = w 1,0
010
5. 8 ool
5 11 P11 L Tetragonal Representation of
2 T2 Tetragonal 5 C deg 010 Face~-centered Cubic
211
g 201 Endecentered
g s I
0 5 12 Monoclinic 54 A deg 001 ba . ca . da
010 I
101 C « centered
0 315 0 Orthorhombic 50 D deg 101 d2 < 3,2- d2 . ca
010 F N
3 210 End-centered
- = 11
0 813 0 Monoclinic sk A deg 010 b2 . ca . da
001 Iy



SR

011l End-~centered
0 54 §1} Monoclinic 55 A deg oly 1
1 1,2 242
00 -2- (8 +Db ) =c a=sb
s-ll §11 §11 101
=5 =55 Isometric L B std 110 Body-centered Cubic
011
= 010
Sll - = [
- 00 Hexagonal 48 A-B deg 001 g= 10
100
g 5 100
_;l "y %l_ Tet nal 45 C deg 00l Tetragonal Representation of
Face~centered Cubic
121
g 021 End-centered
—%41- ) §12 Monoclinic 54 A deg 001 2
’ 2 2 4
100 b - C - E
§ll §11 - 100 Tetragonal Representation of
< 3 (0] Tetregonal 45 C deg 010
Face-centered Cubic
112
= = 001 Body~centered
Sp 511 <
< 3 512 Orthorhombic 52 B deg 111 2 da 2 2
T10 ;.;<b < ¢c© See Note 3
g 0l2 End-centered
1l = -
< Sl) 0 Monoclinic Sh A deg 010 o2 u ce ) a2
100 In
= = 010 Body~centered
5, = °n
- sl} < Orthorhambic 952 B deg 111 2 da 2 2
& =7 < b€ < ¢~ See Note 3

1ol




on

101

Body-centered

S
11 Tetragonal k5 D std 011 5 .
110 J% ST <2
5 o1l Body-centered
Al - 13 —;—12 Tetragonal 45 D alt 110 5 .
101 J; Sz <2
ol C-centered
823 00 Orthor.hanbic 50 D deg o1l d2 < a.a- d2 .o
100 1y ’F
g 120 End-centered
5,5 O Monoclinic 54 A deg 100 2
001 ry
101 End-centered
5., 0 Monoclinic 55 A de To1 . 1
23 > € L2, 22
010 z \a” + b ) =c a=b
3 102 End-centered
- 11 =
853 5 O Monoclinic 54 A deg 100 22 a2
010 N
- - 100 Body-centered
- su s .
5, o Orthorhoubie 52 B deg m 2_ & _2_2
o1 =%
g 110 Body-centered
323 Tetragonal 45 D alt 101 YE e <\]§
01l 3 8
110 End-~centered
— — - 1
S23 0 Monoclinic 55 A deg 110 1 ( > . bg)-a- 5
001 2 8 =c &=




L

130 Transformation results in
523 §23 523 Rhombohedral 49 D std E(:J_. a hexogonal lattice
1 -.333 < cos a . < 0.0
110. End-centered
- - - : - 1
S S, S Monoclinic A de 110 =
23 o3 S12 55 A des L2 +v?)2 e
001 2
101 End~centered
= =z = - 1
) S S, Monoclini A de 101 -
23 S13 So3 moclinie 55 A deg 12,32
010 2
o1l End-centered
= = = = 1
323 315 515 Monoclinic 55 A deg o1 1 (9.2 . b2)2 e
100 e
101 Body-centered
5. 8. (8, - B, 5..) Orthorhombic 52 A std 110 2
23 "13 1 23 13 o1 g <ef< b2 < ¢® See Note 1




Symmetrical Scalars: S,, =Sp, ¢ S55 Transformation

Unsymmetrical Scalars: + Iattice Niggli Figure Matrix Comments
120 Face-centered

511 S Siy ' -

% 7 3 Orthorhombic 51 B deg 102
100 e =3c°
210 Face~centered

Sn Sy Su -

2 T -F . Orthorhambic 51 B deg 012

- ' 010 e =32

[ 100 Trensformation metrix results
n Sn Sn -
Z 3 5 Rhombohedral 49 B std 110 in a hexegonal lattice
o3 0.5 < cos a_ < 1.0
S.. S olo End-centered
1 "12 -
- == S Monoclinic 56 A deg 012 2
2 2 12 a2 - cg P\
100 - 'y
101 Body-centered
Sn 511
- s15 < Monoclinic 57 C deg 010 See Figure, Appendix A
1T Note 6, Appendix B
S S 100 End centered
A3, 2 Monoclinic 56 A de T20 2
2 °13 2 onoc € 2. 4 2
001 Y
00 End-centered
S12 Sn -
—_— — 8 Monoclinie 56 A deg 102 2
2 2 12 32 _ ca 4
010 = iy
s.. s 011 Body-centered
11 11
323 < 5 Monoclinic 57 C deg 100 See Flgure, Appendix A

111 Note 6, Appendix B



6%

S 010 End-centered

Sps -52 % Monoclinie 56 A deg 270 2 & 2
001 8 = F L]
110 End-centered
- 1

S.x S.. O Monoclinic 55 A deg 110 =

23 “23 1,2 ,.,22 .
00l 5 (& +b)° <c a=d
110 End-centered
= 1

S.. S.. 8 Monoclinic 55 A std Ti0

23 “23 12 1,2, 2%
001 5 (2 40 %) <




0S

Symmetrical Scalars: S,, = Spp 4 S” Transformation
Unsymmetrical Scalars: - lattice Niggll Figure Matrix Comments
100
000 Tetragonal 45 A std 010 §> 1.0
001
5 100
=~ = 11 [
00 5 Bexagonal 48 A std 010 2> 10
001
110 C = centered
0 0 S Orthorhombi 1
0 12 c 50 D std 110 ‘12<“.2 d2<c2
001 F=2F
T 100 C ~ centered
5213 Orthorhambie 50 A deg 102 2
2 2.2l
010 )y
100 Simple
) 515 0 Monoelinic 53 A deg 010
001 a=b<e
= 210 End-centered
535, o1 Monoclinie 54 A de 010 z
013 2 m 1 8 vav ba - d‘ < ca
001 ¥
5 5. % 1370 Face-centered
11 711 11 Orthorhoabic 51 B deg 112
T T T2 — 2 2
110 a =3¢
5 010 C - centered
1 - = oy
—_— Orthorhambic A de 012 2
2 [o I 0] ] 50 g 2 2 g

100

8 =¢ <E-




15

3 3 100 Body-centered
Tn _.;_1 5 Tetragonal 45 ¢ std 010 .
112 [ F
S. 012 End-centered
S
Y Monoclinie sk A deg 010 2
2 81’ 100 be = 02 < %
010 Simple
00 Monoclinic 53 A deg 100
001 a=xbc<c
A
3 120 End-centered
o —21-l Monoclinie Sh A deg 100 s & 2
D = <c
001 Y
-3 102 End-centered
2+ Monoelinic Sk A deg 100 o o &
010 B =c <y
1o End-centered
s = - 1
S 0 Monoclinic 55 A deg 110 =
23 001 %(aan:z)a <ca=bd
130 Face-centered
S, '5'23 Orthorhaubic 51 A std 1n2
10 aa <3 c2
110 End-centered
= = - 1
S S S Monoclinic 55 A std 110 =
25 001 % (:v.2 + ’b'é)2 <e
3 101 Body-centered
s 's'13 Monoclinie 57 C deg 110 See Figure, Appendix A
o011 Note 6, Appendix B
011 Body-centered
's"13 Monoelinic 57 B std 110 See Figure, Appendix A
101 Note 4, Appendix B
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Symmetricel Scalars: S,, #S§,, = S35 Transformation
Unsymretrical Scalars: + Iattice Niggli Figure Matrix Comments
s.. s To0 Body-centered
o 2 2 Orthorhombic 52 B std m e &2 2 2
oT1 a<E < b~ < ¢~ See Note 2
011 End-centered
o=~ 1
0 Sl3 Sl} Monoclinic 55 B deg (;; % (52 . ba)-z- >e ach
8537 S 11 : OE c
% 5 3 Tetragonal 45 E std 111 2 <€
100
s s oIo End-centered
2 12 . — . 2
T 812 Monoclinic 56 B deg . o21-] c2 < 3.2 - %
100
S ] ool End-centered
2 g, A3 Monocelini 6 B 4 T 2
5 13 3 noclinie 5 eg 02 2 2 &
100 ¢ <8a =k
S12 Sp1 To0 Fnd-centered
- % Sip Monoclinic . 56 A deg o2 2 o 42
010 & <e =g
s S o0 End-centered
235 Monoclinic 56 A deg T20 2
2 13 2 . 2 2 _d
001 a <¢ = E
s s Joo Body-centered
11 "1l =
823 < T Orthobrhombie 52 B std 111 2 d2 o 2
o-il &<E<b < ¢© See Note 2
011 End-centered
- 1
823 81} Sl3 ] Monoclinic 55 B std ol 1,0 2.3
100 3 (a° +p°) " > ¢




¢S

Symetrical Scalars: Sy; f Sy =854

Transformation

Unsymmetrical Scalars: . Iattice Niggli Figure Matrix Comments
010
000 Tetragonal 45 B std 001 -:-< 1.0
100
s 100 C = centered
o5 2 Orthorhombie 50 A deg 0 2
2 2cc?od
001 by
100 Simple
00 's'12 Monoclinic 53 A deg 001
010 a<bmseg
5 100 C = centered
5250 Orthorhonbie 50 A deg T03 e o &
010 8 <e¢ =g
5 5 100 Body~centered
= 11 °n
0 < 3 Orthorhombic 52 B alt 111 2 d2 2 2
oT1 a<,; < b™ < ¢c” See Note 2
. 100 Simple
0 513 0 Monoclinic 53 A deg 010
001 a<basc
0ll1 End-centered
- = = — 1
0 s s Monoclinic 55 B deg 011 =
13 °13 1,2,.22
. 100 2(; +b°)*>0 am=bd
g 010
11l = — ¢
% 00 Hexagonal 48 B atd 001 5 <10

100




7§

= = 100 Body~-centered
e = Sy
= o] < Orthorhombic 52 C deg 001 2 2 d2
= &<t -y
g, 021 End-centered
22 - e
> 0 81p Monoclinic 54 B deg 001 2 <P . a2
100 |
5 5 100 Body-centered
22 "1l =
< 3 0 Orthorhombic 52 C deg 010 2 o da
']-.T2- a“ <b = u-
5 012 End-centered
22 = -
> Sl) 0 Monoclinic Sk B deg 010 Aca < b2 ) d2
100 ¥
- 55 - . 121 Transformation matrix results
Se2 .5 Su S Rhoubohedral 49 E std oTL in & hexagonal lsttice,
2 3 3 100 ~1.0 < cos @, < =+333
- - - - 100 Body=-centexed
Spp - 512 511 - 512 o
- ; 5, Monoclinie 57 A deg 112 2.2 &
010 I
v
= = = = 100 Body=-centered
5o . 813 -~ Sy . 513
— S Monoclinic 57 A deg 121 2
2 13 e a2 < 02 - d
001 L
011 C ~ centered
323 0 0 Orthorhombic 50 E std 011 ca < d2 < 52
100 |
3 120 End~-centered
5,0 = ‘Monoclinie 5k A deg 100 2
25 e ba < 4 - 02
001 |




g

3 102 End-centered
- 11 -~
523 - 0 Monoclinie 54 A deg 100 W2 < d2 . c2
010 iy
= = 100 Body-centered
= °un Sui
825 < 5 Orthorhombic 52 B alt 111 2 d2 2 >
olL a.<n- < b” < ¢~ See Note 2
o1 End-centered
= = = - 1
823 815 Sl5 Monoclinie 55 B std 0ll 1 (32 . b2)§ > e
100 2
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Symmetrical Scalars: S,; ¥ S,, ¥ 853 Transformation

Unsymmetrical Scalars: + Iattice Niggli Figure Matrix Comments
5. S.. S 120 Face-centered
11 Y11 T11 -
T 5 3 Orthorhombic 51 B std 102
100 a5 3¢
Sp Sia 010 End-centered
< 3 812 Monoclinic 56 B std 012 2 2 d2
. 100 ¢c <a < K
S s Jo00 End-centered
A3 g 4 -
2 13 2 4 Monoclinic 56 C std 120 2 42 2
001 a < E < ¢
s S 100 End~centered
12 "1l -
< 512 ) Monoclinic 56 A std 102 2 2 d2
010 a <¢ < E
5y, Sy, 011 Body~-centered
825 < Monoclinic 57 C std 100 See Figure, Appendix A
T11 Note 5, Appendix B
100
325 815 312 Triciinic 58 A sWd (314 Nene

001




LS

Symmetrical Scalars: S)y # Sy # S33 Transformation
Unsymmetrical Scalars: Tattice Mli Figure Matrix Comments
100 Simple
000 Orthorhambic 50 C std 010
001 32 < b2 < c2
5 100 C - centered
50 2 Orthorhambic 50 B std =0 2
2 a.a < d < c2
001 Iy
100 Simple
00 §12 Monoclinic 53 C std 001
010 a<c<b
g 100 C - centered
525 Orthorhambic 50 A std Joz 2
2 a.a < c2 < 4
010 by
100 Simple
0 513 0 Monoclinie 53 A std 010
001 a<b<e¢
g 010 C « centered
2 55 Orthorhambic 50 F std 012 2
2 22l
100 iy
= = 100 Body-centered
S 511 -
) Orthorhombic 52 C std 010 2
2 2 ey 32 < b2 < % < c2
112
g 0l2 End~centered
2 5.3 Monoelinie 5k B std 010 2
2 °13 2ol
100 ¥




8¢S

= = = I3 100 Body-centered
Spp - 519 511 - 51 =
3 7 812 Monoclinic 5T A std 112 2 2 d.2
010 &8 <e <y
010 Simple
5'25 00 Monoclinic 53 B std 100
001 b<ac<e
5 120 End-centered
= = °1n
S, Q0 -~ Monoclinic Sh A std 100 2
23 2 b2 < 4 < 02
001 13
3 102 End-centered
- 11 -
823 < 0 Monoclinic sh C std 100 2l < a2
010 . iy
- - 111 Body-centered
= Su Sn
325 - 5 Monoclinic 5T C alt 100 See Figure, Appendix A
01T Note 5, Appendix B
100
823 Sl5 812 Triclinic 58 B std 010 None

001




Note 1: For 52A, eee, it is possible for one unit cell to yield six re-
duced cells. This is accomplished by a cyelic permutation of the unsym-
metrical scalars, which, in turn, results in a cyclic permutation of the
orthorhombic unit cell axes. For all these cells, however, the sum of
the unsymmetrical secalars is equal to Sll and the final choice of the
individual a, b, ¢ axes is left to the investigator.

Note 2: For 52B, eff, it is possible for one unit cell to have two dif-
ferent values for 823. These correspond to an interchange of the ortho-
rhombic b and ¢ axes,and the final choice is left to the investigator.
The algebraic signs for the two values of 823 may be either (+, +) or
(+, -). Consequently, it is possible, when the algebraic sign changes
from + to -, for 823 to have the value % 0.0.

Note 3: For 52B, gee, if all diagonal vectors are chosen, then this case

is identical with the general case 52A. If an axisl vector plus diagonal
vectors are chosen, then all unsymmetrical scalars are permuted. The
algebraic signs of 823 (or Sl3 or 312) may be again in the general case

(+, +) or (+, =). For 825 (or SlB or 512) = + 0.0, an alternative repre-
sentation for the face-centered cubic is obtained. For 823(01' 313 or 812) =
«0.0, the tetragonal representation of the face~-centered cubic is obtained.
Note 4: For 57B, eef, an interchange in positions for the values 323 and.
513 is to be e:;pected. This results 1n merely an interchange of the final
a and ¢ axes, The correct B angle is calculated in either case. The sum

of unsymmetrical scalars equals S...

11
Note 5: For S5T7C, efg, it is possible that a reduced cell of the variety

S5 1/2 8,, 1/2 B, may exist. This cell is designated as an alterna-
)

tive standard representation.

Note 6: For 57C, eef, two different positive values for 823 exist. Use
of one or the other causes only an interchange of the unit cell a and c
Sy and 1/2 S;, 1s also to be expected. In
gddition there exists a reduced cell having the characteristics S23 313
11. An interchange of 5__ and 5., values is to be expected and results

23 13
i% an interchange of the g and ¢ axes in the transformed unit cell.

axes. An interchange of
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Appendix C.

An alternative method leading to the derivation of Niggli

matrices

Niggli derived his 4l standard general reduced cells by applying
Eisenstein's (1851) theory of reduced ternary quadratic forms to the
equation for determining the sbsolute length of any vector, ;b_, in any

lettice. This equation is

|§|2=02§_2+ ve_'b_2+w292+2UVQcos7
+2UWaccosB
+2 VW be cos &
vhere a, b, ¢, @, B, and 7 are the cell constants and U, V, W are
integers. The above equation mey be identified with the following
equation of Eisenstein
f=x2a+y2‘b+22c+2xyt
+2x 28
+2yzr
Subject to a series of rather remarkable conditions, Eisenstein
questions may be reduced, i.e., 8 unique solution may be found. If two

or more Eisenstein equations are to be classed as equivelent, one merely
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need compare their reduced forms. If the reduced forms ere equivalent,

the original equations are equivalent.

The Eisenstein conditions applicable to the crystallographic

equation given above are:

If (1), abcos 7, a c cos B, bc cos @ are all positive or all

negative;

then (2), a° sb° sc°, (a2 +b° +2 D

7 20];
and (3),
and (L),

However, (5), for

1o
Q
Q
®
Q
+
N

|

[e]
o
o]
@
gv)
+
hv]

[§od

o’
)
o]
7]

ag k" 2| 2bgcosal;
i£8°=2" | becosal<|accost|;
1207 =¢c" laceosp|=]aboosy|;
if‘[_qe+'_b_2+2_'g_<_:_cosa+29__c_cos[3+2§_‘gcos 7=0,

22+2_a_9_cosﬁ+§_’p_cos750].

abcos ¥, accos B, beccosa=<0;
ifg2=-231gcosy, then a ¢ cos B = 03
ifga=-2_§gcosﬁ, then a b cos 7 = O;
if132=-213_9_coso:, then a b cos 7 = O3

Aso, (6), for a bcos y, accos B, b¢c cos @ >0;

if a2

2abcos 7, thenaccosB <s2bc

0
Q
o}
n
Q

.

2accos B, thenabecos y<2Dbc cos C;

2bccosa thengbcos y<23ac cosf.

The conditions in brackets [ ] are omitted unless a b cos 7, 8 b cos B,

b ¢ cos O are all

—

< 0.
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According to the definition of a lattice any lattice point may be
reached from any other lattice point by appropriate translation of the
vectors (or fractions of the vectors) chosen to describe the edges of
the unit cell., It foﬂo&s then, that the vector distance from an origin
to any given lettice point may be found for any of the infinite number
of unit cells that may be defined.

The Eisenstein conditions given sbove imply that any lattice and
any vector distance may be examined by the following procedure:

In a given lattice let & unit cell be chosen. Let the cell be
subjected to the Eisenstein conditions. If the cell passes all the

criteria implied by the conditions, it is said to be Eisenstein reduced

and may represent a unique solution. If the cell chcsen does not pass
the conditions it is not Eisenstein reduced and the implication is that
another cell must be chosen if a unique solution is desired.

The application of Eisenstein conditions to several types of cells
is illustrated below.

Exemple 1. For a simple cubic cell (Fig. 44A, Appendix A) let the cell

chosen be:
a = a for which cos @ =0 and &8 b cos 7 =0
b=a cos B =0 accos B =0
c=23a cos y=0 becos@=0
Then, Condition (1) is satisfied; +, +, +.
Condition (2) is satisfied; 22 =8 = 52.
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Condition (3) is satisfied; &° >0, a- >0, a> > O.

Condition (4) is satisfied; g? 2

2 a2

= -2

]
i®
-

O

n

N4

Condition (5) 1s satisfied; 0, O, O, = O; remainder is not
applicable.
Condition (6) is not applicable.
Since the chosen cell passes all the criteria implied by the conditions,

the cell is Eisenstein reduced.

Example 2a. For a body-centered cubic cell (Fig. 44B, Appendix A) let

the cell chosen be:

a =1/2 a /3 (1/2 diagonal of cell) for which cos a = 1//2
b=a (cell edge) cos B = /2//3
¢c=2a/2 (diagonal of cell face) cos 7 = L3
and a b cos 7=l/2g_2

a¢cosp=a

beccosa-= a2

Then, Condition (1) is satisfied; +, +, +.
Cordition (2) is satisfied; 3/ g_2 < _a_2 <2 §_2.
Condition (3) is not satisfied; 3/b4 g? t M P 321.
Since the chosen cell is not reduced, a new cell should be chosen if a

unique cell is desired.
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Example 2b. For a body-centered cubic cell (Fig. 4hB, Appendix A) let the

cell chosen be:

a=1/2 a/3 for vhich cos @ = - 1/3 end a b cos 7 = - l/h_g?
b=1/2 a/3 | cos B = - 1/3 accospP=-21/h 3?
c=1/2 8 /3 cos ¥ = - 1/3 bececosas=-1/k g?

Then, Condition (1) is satisfied; -, -, -.

3/ &%,
rs/u g? + 3/h g? - 2/h g? - 2/h g? - 2/h g? =07.

Condition (2) is satisfied; 3/h g? = 3/4 g?

Condition (3) is satisfied; 3/4 a° > 2/k a2, 3/% a° > 2/ a°,

3/h a° > 2/h a-.
Condition (&) is satisfied; 3/4 g? = 3/h g?, 1/% g? = 1/L4 g?,

3/4 &° = 3/h &5, 1% &° = 1/k &7,

[5/% 8° +3/k 8 - 2/u 6° - 2/k &° - 2/k &° = 0,

3/ a° - 2/l a° - 1/4 e® = 01.
Condition (5) is satisfied; -, -, -; remainder is not applicable.
Condition (6) is not applicable.
Since the chosen cell passes all the relevant tests, it is Eisenstein

reduced.

Example 3a. For a face-centered cubic cell (Fig. 4hC, appendix A) let

the cell chosen be:

a = 1/2 a /2 for which cos @ = 1/2 and & b cos 7 = 1/k a°
b=1/2a/2 cos B = 1/2 accosB=1/h a°
¢c=1/2a/2 cos 7 = 1/2 beccosa=1/h g?
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Then, Condition (1) is satisfied; +, +, +.

Condition (2) is satisfied; 1/2 a° = 1/2 a° = 1/2 a°.
Condition (3) is satisfied; 1/2 a2 = 1/2 a2, 1/2 a° = 1/2 &7,
1/2 9_2 = 1/2 52.
. 2 2 2 2
Condition (4) is satisfied; 1/2 8° = 1/2 2%, 1/h a2~ = 1/4 a~,
1/2 o2 = 1/2 %, 1/h &° = 1/4 2°.

Condition (5) is not applicable.
Condition (6) is satisfied; +, +, +

1/2 &2, amd 1/k a° < 1/2 &%,

]
~
n
[+ ]
#

1/2 82 = 1/2 82, and 1/4 a° < 1/2 &%,
1/2 o2 = 1/2 82, and 1/4 a° < 1/2 &°.
The chosen cell is thus Eisenstein reduced.
Example 3b. For a face-centered cubic cell (Fig. 44C, Appendix A) 1let

the cell chosen be:

l/2§_f2forwhichcosa=-0andg__’tgcosy=-l/h-g_2,

o
]

[y
1}

1/2 a /2 cos B==-1/2 accosPB=-1/ka",

1/2 a /2 cos y==-1/2 beeos==0.

el
]

Then, Condition (1) is satisfied; -, -, =-.

Condition (2) is satisfied; 1/2 52 = 1/2 §_2 =1/2 _a_2,

2

\'_l/2_a_2+l/2g._2-0-1/2 -1/252=o].

a
2 2 2 2
Condition (3) is satisfied; 1/2 a~ = |- 1/2 a°|, 1/2 a%=|- 1/2 &°l,

1/2 & > | -ol.

65




1/2 8%, 1-0l<|- 1/4 @71,
1/2 68 = 1/2 &%, |~ 1/u &°]=l- 1/ &7,

[1/2 _ge +1/2 52 -0 =1/2 ge -1/2 22 = 0,

Condition (4) is satisfied; 1/2 a°

i/2 _a_2 - 1/2 52 - 1/h 52 <0 1.
Condition (5) is not satisfied; -, -, -
o
1/2 82 = 1/2 a°,but - 1/k &° $ 0.

Therefore the chosen cell is not Eisenstein reduced.

Jones (1935) writes that for any given point lattice an Eisenstein
reduction (Parenthetical insertions by Roof)

"amounts to picking a coordinate system (i.e., a unit cell) as

follows: choose any point O of the lattice as the origin, call

A one of the points of the lattice closest to O, draw the X axis

along OA, choose as B one of the points as close to O (%, i.e.,

the X axis) as any point of the lattice not on the X axis ard

draw the Y axis along OB, choose as C one of the points as close

to O as any point of the lattice not in the XY plane and draw

the Z axis along OC."
A systematic application of this recipe to the point lattices having
various generalized dimensionsl configurations will yield the 41 Niggli
reduced cells. The addition of the expression (X, i.e., the X axis), to
the above definition is important, as it was shown in Example 3b that a
lattice point may be chosen "as close to O as any point of the lattice
not on the X axis,"” which does not yield an Eisenstein reduction. On
the other hand, in Example 3a an Eisenstein reduction is obtained if
the lattice point chosen is the one closest to the OX line, i.e., the
X axis.

The cell chosen in 3b, while it is camposed of a set of three



shortest noncoplanar vectors having the cosines of the interaxial
angles all negative and may therefore be classed as reduced, is not
Eisenstein reduced. It is actually a very special case that would occur
in the body-centered tetragonal lattice (Fig. 45C, Appendix A) when the
ratio ¢/a = /2. In this case the Eisenstein reduced form is the
reduced cell given in Example 3a for the face-centered cubic lattice.
The 41 Niggli matrices are all Eisenstein reduced. It does not
necessarily follow that speclal or degenerate representations of these
matrices will yield cells that are themselves Eisenstein reduced. A
hexagonal lattice having g/g = 1.0 generates a special Niggli represen-
tation,and the reduced cell (in standard orientation) is also Eisenstein
reduced. However, a body-centered tetragonal lattice with c¢/a = /2 also
generates a special Niggli representation but the reduced cell (in

standard orientation) is not Eisenstein reduced.
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